

Spanning Tree

Table of Contents
PROJECT GOAL .. 0

Part 1: Setup .. 0

Part 2: Files Layout .. 0

Part 3: TODOs .. 1

Part 4: Testing and Debugging .. 4

PROJECT GOAL
Spanning Trees which can be used to prevent forwarding loops on a layer 2 network

(Modules->Lesson 1-> Looping Problem in Bridges and the Spanning Tree Algorithm). In this

project, we will develop a simplified, distributed version of the Spanning Tree Protocol that can

be run on an arbitrary layer 2 network topology. We will simulate the communications between

switches with Messages. The goal is to converge on a single solution and output the final spanning

tree.

Part 1: Setup
We can do this project on the host system if it has Python 3.11.x. The project does not have any

dependencies outside of Python.

Part 2: Files Layout
There are many files in the SpanningTree directory, but we should only modify Switch.py, which

represents a layer 2 switch. We will implement the functionality of the Spanning Tree Protocol to

generate a Spanning Tree for each Switch.

The files in the project skeleton are described below. DO NOT modify these files. All of the code

must be in Switch.py ONLY. We should study the other files to understand the project.

• Topology.py - Represents a network topology of layer 2 switches. This class reads in

the specified topology and arranges it into a data structure that the Switch can access.

https://en.wikipedia.org/wiki/Spanning_tree
https://en.wikipedia.org/wiki/Spanning_tree
https://en.wikipedia.org/wiki/Spanning_Tree_Protocol
https://en.wikipedia.org/wiki/Spanning_Tree_Protocol

1

This class also adjusts the topology if any changes are indicated within the XXXTopo.py

class.

• StpSwitch.py - A base class of the derived class we will code in Switch.py. The base

class StpSwitch.py is the parent class to the Switch. It sends the initial messages.

• Message.py - This class represents a message format we will use to communicate

between switches, similar to the course lectures. Specifically, we will create and send

messages in Switch.py by declaring a message as:

msg = Message(claimedRoot, distanceToRoot, originID,

destinationID, pathThrough, ttl)

and assigning the correct value to each input. Message format may NOT be changed. See

the comments in Message.py for more information on the data in these variables.

• run.py - A "main" file that loads a topology file (see XXXTopo.py below), uses that data

to create a Topology object containing Switches, and runs the simulation.

• XXXTopo.py, etc. - These are topology files that we will pass as input to the run.py file.

Part 3: TODOs
This is an outline of the code we must implement in Switch.py with suggestions for

implementation. The implementation must adhere to the “spirit of the project”: it must be a

distributed solution.

A. Decide on the data structure(s) that we will use to keep track of the spanning tree.

1. The collection of active links across all switches is the resulting spanning tree.

2. The data structures may be variable(s) needed to track each switch’s own view of the

tree. A switch only has access to its member variables. A switch may not access its

neighbor’s information directly – to learn information from a neighbor, the neighbor

must send a message.

3. This is a distributed algorithm. The switch can only communicate with its neighbors.

It does not have an overall view of the spanning tree, or the topology as a whole.

4. An example data structure should include, at a minimum:

a. a variable to store the switch ID that this switch sees as the root,

b. a variable to store the distance to the switch’s root,

c. a list or other datatype that stores the “active links” (only the links to neighbors

that are in the spanning tree).

d. a variable to keep track of which neighbor it goes through to get to the root (a

switch should only go through one neighbor, if any, to get to the root).

5. More variables may be used to track data as needed to build the spanning tree and

will depend on the specific implementation.

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/2/tutorial/datastructures.html#more-on-lists
https://docs.python.org/2/tutorial/datastructures.html#more-on-lists

2

B. Implement processing a message from an immediate neighbor.

1. We do not need to worry about sending the initial messages. We only need to worry

about the sending and processing of subsequent messages.

2. For each message a switch receives, the switch will need to:

a. Determine whether an update to the switch’s root information is necessary

and update accordingly.

I. The switch should update the root stored in its data structure if it

receives a message with a lower claimedRoot.

II. The switch should update the distance stored in its data structure if

a) the switch updates the root, or b) there is a shorter path to the same

root.

b. Determine whether an update to the switch’s active links data structure is

necessary and update accordingly. The switch should update the activeLinks

if:

I. The switch finds a new path to the root (through a different

neighbor). In this case, the switch should add the new link to

activeLinks and (potentially) remove the old link from activeLinks

II. The switch receives a message with pathThrough = TRUE but does

not have that originID in its activeLinks list. In this case, the switch

should add originID to its activeLinks list.

III. The switch receives a message with pathThrough = FALSE but the

switch has that originID in its activeLinks. In this case, the switch

should remove originID from its activeLinks list.

c. Determine when the switch should send new messages to its neighbors and

send the messages.

I. The message FIFO queue is maintained in Topology.py. The switch

implementation does not interact with the FIFO queue directly, but

uses the send_message function, and receives messages as

arguments in the process_message function.

II. When sending messages, pathThrough should only be TRUE if the

destinationID switch is the neighbor that the originID switch goes

https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)

3

through to get to the claimedRoot. Otherwise, pathThrough should

be FALSE.

III. The switch should continue sending messages to its neighbors until

the ttl on the Message reaches 0. We will need to decrement the ttl

as we are processing the Messages.

3. Other variables may be helpful for determining when to update the root information

or the activeLinks data structure and can be added to the data structure and updated

as needed, depending on the implementation.

4. Once this logic is complete, we will need to understand a few other things about the

topologies to check the log results. For certain topologies, switches may get dropped

while the algorithm is running. In this case, the algorithm should adjust accordingly

and create a Spanning Tree for the new topology. The Topology class will restart the

message process if a change occurs. This is handled for we already. The final

Spanning Tree should match the results of the new Topology, not the starting one.

a. The switch that is dropped should never split the original topology. That

means that the final Topology will remain connected and there will only be

one resulting Spanning Tree.

b. The switch that is dropped could be the original root, the algorithm should

adapt accordingly.

c. The Topology file will include the ttl_limit and drops. The ttl_limit is the

starting ttl for each message in the Topology. Once the message has been

passed around that many times, the algorithm should terminate. This is

something we must implement. The drops indicate which switch(es) will be

dropped to change the topology. C. Write a logging function.

1. The switch should only output the links that are in the spanning tree.

2. Follow the below format (# - #). Unsorted or non-standard formatting will result in

penalties. Examples of correct logs with the correct format have been provided to

we.

3. Sorted: Not sorted:

1 - 2, 1 - 3 1 - 3, 1 - 2

2 - 1, 2 - 4 2 - 4, 2 - 1

3 - 1 3 - 1

4 - 2 4 - 2

4

Part 4: Testing and Debugging
To run the code on a specific topology (SimpleLoopTopo.py in this case) and output the results to

a text file (out.txt in this case), execute the following command:

python run.py SimpleLoopTopo

 “SimpleLoopTopo” is not a typo in the example command – don’t include the .py extension.

We have included several topologies with correct solutions for we to test the code against. We

can (and are encouraged to) create more topologies and test suites with output files and share

them on Ed Discussion. There will be a designated post where students can share these files.

We will only be submitting Switch.py – the implementation must be confined to modifications

of that file. We recommend testing the submission against a clean copy of the rest of the project

files prior to submission.

